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SIMULATION OF THE MOTION AND HEATING OF AN IRREGULAR PLASMA

UDC 517.958:537.84V. T. Astrelin,1 A. V. Burdakov,1 N. A. Huber,2 and V. M. Kovenya3

A physicomathematical model for plasma heating and confinement is formulated on the basis of some
assumptions on the behavior of a dense plasma cloud in a magnetic field. The model allows for
the ionization and heating of the plasma cloud by the surrounding deuterium plasma due to heat
conduction and heating by a superthermal electron current. The expansion of a plasma cloud in
an external magnetic field is studied using some simplifications in a magnetohydrodynamic approx-
imation. Plasma heating is modeled by an external source. The basic equations include continuity,
motion, energy, and magnetic-field equations. For numerical solution of the problem, we developed a
finite-difference scheme of the type of a universal algorithm with splitting into physical processes and
spatial directions, which allowed us to obtain separate solutions of the equations of magnetic induc-
tion and gas dynamics. Calculations of the propagation of a plasma cloud heated by a source in an
external magnetic field were performed. The mechanism of the effect of the magnetic field and heat
source on plasma cloud expansion is determined. The results agree qualitatively with experimental
data.

INTRODUCTION

In recent decades, plasma heating and confinement has become an important problem in plasma physics.
Because of the variety of regimes, the wide range of parameters of the medium, and the complexity and nonlinearity
of the examined processes, problem of plasma heating and propagation is a multiparameter one, which requires
using various approaches to solve it. In the present work, we attempted a numerical simulation of the plasma
dynamics under conditions corresponding to the experiment performed on the GOL-3 facility at the Institute of
Nuclear Physics of the Siberian Division of the Russian Academy of Sciences. This facility is used in experiments on
formation and heating of a dense gas cloud originating from a grain (target) of lithium deuteride or another material
that vaporizes under the action of a powerful relativistic electron beam (REB) and interacts with the background
plasma [1]. It should be noted that simulations of plasma heating and dynamics on the GOL-3 facility have also
been performed earlier but the plasma was studied without a target within the framework of a one-dimensional
gas-dynamic model [2].

1. GENERAL FORMULATION OF THE PROBLEM
IN A MULTICOMPONENT MULTIVELOCITY APPROXIMATION

1.1. Description of the Experiment. The GOL-3 facility is a long solenoid with edge magnetic plugs.
In the homogeneous part, the magnetic induction is B = 4.5 T, and the plug ratio is Hmax/H0 = 2. The solenoid
of length L ≈ 12 m is filled with a homogeneous hydrogen (deuterium) plasma of diameter D = 6 cm and density
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n ≈ 1015 cm−3. The plasma column is heated by a powerful electron beam with an energy up to eU0 ≈ 1 MeV,
a current up to I0 ≈ 30 kA, and a duration up to τb ≈ 8 µsec. The collective interaction of the beam with the plasma
leads to heating of the plasma electrons to Te ≈ 1 keV with formation of a group of accelerated non-Maxwellian
electrons with a density nh ≈ 1013 cm−3 and a characteristic energy εh ≈ 10 keV.

Before the beam switches on, a grain of a solid material (lithium deuteride, polyethylene, etc.) of mass
0.1–0.2 mg is injected into the center of the solenoid. After the beam switches on, the grain vaporizes, dissociates
into atoms, and ionizes to form a dense plasma. As estimates show, the immediate heating of the grain by the
electron beam is inappreciable because the mean free path of the beam electrons l ≈ 0.3 cm is much larger than
the grain size. The energy for heating the grain comes primarily from the thermal and superthermal electrons of
the plasma and the delayed scattered electrons of the beam. Estimation of the dynamics of the processes shows
that in t ≈ 0.5 µsec, the grain vaporizes, the molecules dissociate, and the gas bunch is heated to T ≈ 0.1–1.0 eV
with expansion to approximately 1 mm at a rate of about 1.5 · 105 cm/sec. This state is taken as the initial one
for simulation and numerical solution of the problem. As shown in experiments, the expansion and heating of
the plasma cloud of the grain proceeds until this dense plasma is magnetized. Next, as in the model of two-step
heating [3], the grain plasma absorbs the energy of the hot plasma and the high-velocity electrons accumulated in the
12-m solenoid. The energy content of the REB is sufficient that the energy accumulated in the grain plasma reached
a value of about 1 keV/atom. The present simulation is carried out for a grain of lithium deuteride containing the
isotope of lithium with a relative atomic weight of 6.

1.2. Collisional Characteristics and Magnetization of the Plasma. To determine the state of the
plasma cloud, we estimated a number of its parameters. The results are given below.

1. At the stage of ionization of the gas–plasma mixture, the mixture components have identical temperatures
(equilibration time t ≈ 10−10 sec). Since the dense gas–plasma bunch is characterized by a high collision frequency,
the present calculations used an approximate model of ionization equilibrium. For Te 6 T ∗α, it is defined by the
linear relation fα(Te) = max{0, (Te − 1)/(T ∗α − 1)}, where Te and T ∗α are in electronvolts, and fα ≡ 1 at Te > T ∗α.
For deuterium, the characteristic ionization temperature T ∗ is set equal to approximately 3 eV (as follows from the
Saha formula), and for lithium, it is taken to be T ∗ ≈ 15 eV, i.e., about 1/5–1/4 of the mean ionization energy of
the atoms (13.6 eV for deuterium and approximately 70 eV for lithium). The electron density is given by

ne = ZDnsDfD(Te) + ZLinsLifLi(Te), (1)

where Z is the charging number (ZD = 1 and ZLi = 3) and ns is the density of the atoms (charged and neutral);
the subscripts D and Li correspond to deuterium and lithium, respectively.

2. The temperatures of the deuterium and lithium ions are nearly always equal (even at r ≈ 4 cm, the
equilibration time is t < 10−6 sec).

3. The temperatures of the electrons and ions are nearly equal when the dimension of the bunch r < 1.5 cm
[equilibration time t < (0.1–0.3) · 10−6 sec and further increases in proportion to (rT 1/2)3], and with expansion of
the bunch, they can differ.

4. At the initial stage of expansion, the plasma is not magnetized. Magnetization of the plasma electrons is
manifested at r > r∗ = 1.0–1.5 cm. Hence, before this stage there is spherical expansion of the cloud, and then the
transverse motion is determined by the rate of plasma diffusion across the magnetic field. Along the magnetic field
there is free gas-dynamic expansion of the plasma, so that the expansion of the cloud is no longer spherical.

1.3. Combined Equations of Magnetohydrodynamics. Following studies [4, 5], we formulate a system
of equations to describe the dynamics of a three-component plasma (ions of two sorts and electrons) in a magnetic
field. Assuming that the velocities of the atoms are identical, we write the continuity equations for deuterium and
lithium:

∂nsD
∂t

+ –er (nsDV i) = 0,
∂nsLi

∂t
+ –er (nsLiV i) = 0. (2)

According to the above ionization model, the densities of the ions are defined as nD = nsDfD(Te) and nLi =
nsLifLi(Te) and the electron density is determined from expression (1).

The equations of motion for the ions and electrons taking into account collisions have the form

(mDnD +mLinLi)
[∂V i

∂t
+ (V i · ∇)V i

]
= −∇[(nD + nLi)kTi] + e(ZDnD + ZLinLi)

[
E + (1/c)[V i ×H]

]
−RU −RT ; (3)
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mene

[∂V e

∂t
+ (V e · ∇)V e

]
= −∇(nekTe)− ene

[
E + (1/c)[V e ×H]

]
+RU +RT . (4)

The expressions for the force of friction between the electrons and ions [4]

RU =
mene
τe

[
0.44(V i‖ − V e‖) + (V i⊥ − V e⊥)

(
1− 5.52(ωeτe)2 + 0.56

(ωeτe)4 + 10.8(ωeτe)2 + 1.05

)]
= ene(σ̈−1j)

(5)
and the formula for the thermal force

RT = ne

(
0.91∇‖kTe +

4.45(ωeτe)2 + 0.95
(ωeτe)4 + 10.8(ωeτe)2 + 1.05

∇⊥kTe

+
(ωeτe)(1.5(ωeτe)2 + 1.78)

(ωeτe)4 + 10.8(ωeτe)2 + 1.05
[h×∇kTe]

)
= ne(χ̈∇kTe) (6)

are obtained for the mean value of the ion charge Z = 2. Because in this approximation the ratios Zα/mα for
ions of both sorts are equal, it follows that with identical initial velocities, their further velocities will also be
equal, and this is used in the continuity equations (2). Here ωe = eH/(mec) is the cyclotron electron frequency,
τe = 3

√
me(kTe)3/2/(4

√
2πλe4Zne) is the time of electron scattering by ions, λ is the Coulomb logarithm, k is the

Boltzmann constant, h is a unit vector directed along the magnetic field, j = ene(V i − V e) = (c/(4π)) rotH is
the current density in the plasma. In addition, expressions (5) and (6) contain the conductivity tensor σ̈ and the
dimensionless thermal force tensor χ̈.

At the initial stage, where the processes are determined by collisions, the expansion of the plasma bunch is
spherically symmetric. Furthermore, the sliding of plasma layers is insignificant throughout the process. Therefore,
the viscosity force in (3)–(6) is ignored.

Using Eqs. (3)–(6) and taking into account the equality of temperatures and velocities of the ions, we write
the following equation of motion for the plasma (equation of one-fluid magnetohydrodynamics):

neM
dV

dt
= −∇

[
(nD + nLi)kTi + nekTe

]
+

1
c

[j ×H].

In this case, the last term of the equation can be brought to the form −∇H2/(8π) + (H · ∇)H/(4π) (see [5]). Here
d/dt is the total derivative and M and V are the mean mass and velocity of a plasma particle:

M =
mDnD

ne
+
mLinLi

ne
+me, V =

1
M

[(mDnD

ne
+
mLinLi

ne

)
V i +meV e

]
.

Similarly to [5], we obtain the magnetic field equation. We divide Eq. (3) by mene and (4) by mDnD+mLinLi

and subtract from one the other, neglecting inertial terms and terms of order me/mi. We obtain a relation between
the electric field and the current density similar to Ohm’s law. Next, performing the operation of rot and using
Maxwell’s equations

rotE = −1
c

(∂H
∂t

)
(7)

and rotH = 4πj/c, we obtain the required equation

∂H

∂t
= rot [V ×H]− c

4πe
rot

[rotH ×H]
ne

− c

ene
[∇ne ×∇kTe] +

c2

4π
σ̈−1 ∆H +

c2

4πene
rot (χ̈∇kTe). (8)

The energy-balance equation is written with allowance for the heating of the cloud by the electron beam
and by the superthermal electrons of the background plasma, energy expenditures in ionization of the cloud and
transfer of the thermal energy to the ions of the cloud [2]:

3
2
∂(nskTi)

∂t
+

3
2

–er (nskTiV i) + nskTi–erV i = –er (æ̈i∇kTi) +Qi,

(9)
3
2
∂(nekTe)

∂t
+

3
2

–er (nekTeV e) + nekTe–erV e = –er (æ̈e∇kTe) +Qe.
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Fig. 1. Results of experiments on absorption of electrons by a hydrogen cloud
and a graphite target: points 1 and 2 show the distributions of the energy
absorbed by the hydrogen cloud and the graphite target, respectively; curves
3, 4, and 5 are the energy contribution from superthermal electrons, thermal
(Maxwellian) electrons, and beam electrons, respectively.

Here the source of heating of the bunch electrons

Qe =
∂E

∂t
− ∂(εD

i + εLi
i )

∂t
+

1
2
ne
τe

me

M
k(Ti − Te)

contains the above-mentioned components, and

εD
i ≈ nD

[
30− 16.4 exp

(
− 5 · 1013

n

)] 5.45
T exp ((n/(1.37 · 1014))0.26)

(10)

is the price of ionization of deuterium atoms, εLi
i ≈ 70 eV is the price of ionization of lithium atoms, i.e., the energy

absorbed by the atoms of the cloud that is expended in excitation and ionization during their heating, and ∂E/∂t

is the heating of the cloud due to deceleration in it of superthermal plasma electrons and beam electrons with an
energy of 5–1000 keV, which interact with the plasma. In (10), εD

i and T are in eV and nD is in cm−3. The heating
of the cloud is described by the expression

∂E(nl, t)
∂t

=
P (t)ηh
S

∞∫
εmin

f(nl, ε)
ϕ(ε) dε
ε

,

where P (t) is the REB power transferred to superthermal electrons with efficiency ηh, S is the section of the
beam, ϕ(ε) is the spectrum of energy of superthermal electrons, f(nl, ε) is the function of absorption of electrons

with energy ε at the length corresponding to the linear density nl =
∫
ndl, which given with the normalization∫

f(nl, ε) d(nl) = ε. In the physical model considered, the heating of the cloud is described by an experimental

heat-release distribution over the depth of the target R(nl) per a pulse of the REB (Fig. 1). This makes it possible
to immediately take into account the real energy distribution of the electrons of the background plasma and the
beam:

∂E

∂t
=

P (t)∫
P (t) dt

R(nl). (11)

Here P (t) is the power of the beam and nl is reckoned from the boundary of the calculation domain.
The term Qi = (1/2)(ne/τe)(me/M)k(Te − Ti) describes the heating of ions due to electron–ion collisions.
The electron heat conductivities in the cloud for Z = 2 are specified as follows [4]:
— for longitudinal conductivity,

æe‖ = 4.9
nekTeτe
me

;
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— for transverse conductivity,

æe⊥ =
nekTeτe
me

4(ωeτe)2 + 5.1
(ωeτe)4 + 10.8(ωeτe)2 + 1.05

;

— for “oblique” conductivity,

æe∧ =
nekTeτe
me

(ωeτe)(2.5(ωeτe)2 + 15.4)
(ωeτe)4 + 10.8(ωeτe)2 + 1.05

;

so that the heat flux is equal to qeT = −æe‖∇‖kTe − æe⊥∇⊥kTe − æe∧[h × ∇kTe]. It should be noted that in
the collective interaction of the beam with the plasma, experiments and calculations [2] revealed suppression of
the electron heat conductivity by a factor of ζmax ≈ 102–103, which was explained by an increase in the effective
frequency of electron collisions for developed Langmuir turbulence. The local turbulence level depends on the
power of the beam and the plasma density because of the stabilizing effect of electron collisions on the development
of beam instability [2]. Furthermore, for a plasma density above a certain critical value of nc ≈ 3 · 1015 cm−3,
collective interaction of the beam with the plasma is practically absent. These effects are allowed for in the model
phenomenologically, by a numerical coefficient that depends on the beam power P and the electron density ne:
æ̈∗e = æ̈e/(1 + ζmax

√
P (t)/Pmax max{0, log (nc/ne)}).

Similarly, the ion heat conductivity is defined as

æi‖ = 3.9
nskTiτi
mi

, æi⊥ = 2
nskTiτi
mi

2(ωiτi)2 + 2.6
(ωiτi)4 + 2.7(ωiτi)2 + 0.677

,

æi∧ = 2
nskTiτi
mi

(ωiτi)(2.5(ωiτi)2 + 4.65)
(ωiτi)4 + 2.7(ωiτi)2 + 0.677

.

Suppression of the ion heat conductivity is ignored in the model because it was not revealed in experiments.
1.4. Initial Conditions. The initial conditions of the problem are determined by the state of the system

in an experiment 0.5 µsec after the beam switches on. The density and temperature of the background plasma are
n ≈ 1015 cm−3 and Te ≈ 10 eV, respectively, and the velocity is V = 0. The parameters of the plasma cloud are
as follows: ns ≈ 0.5 · 1021 cm−3, r0 ≈ 1 mm, T0 ≈ 1 eV, and V0(r) ≈ 1.5 · 105(r/r0) cm/sec. By this moment, the
power of the beam reaches P ≈ 10 GW (maximum power Pmax ≈ 30 GW at the moment tmax ≈ 3 µsec) for a beam
duration of 6 µsec and a total energy content of about 150 kJ (data of a typical experiment).

1.5. Boundary Conditions. On the axis of the system, the boundary conditions have the standard form:
∂/∂r = 0; on the boundaries of the simulation domain along the z coordinate, ∂(Te, Ti, ne, ni,V e,V i,H)/∂z = 0.
In the domain considered, the electron temperature is determined from the energy contribution from superthermal
and beam electrons by dependences (11) using Fig. 1 and Eqs. (9). On the outer boundary of the plasma located
close to the metal surface of the vacuum tube of the facility, the boundary conditions for the plasma depend on how
close the boundary is to the tube. The magnetic field inside the tube should satisfy the condition of conservation

of the field flux in the tube Φ =

R∫
0

2πrH(r) dr.

The solution of the complete problem involves simultaneous solution of the Eqs. (2)–(4) and (7)–(9) subject
to the initial and boundary conditions.

2. ONE-FLUID MODEL

2.1. Formulation of the Problem. We consider the propagation of a dense plasma cloud heated by an
extraneous source in an external magnetic field. At the initial moment, the plasma cloud is assumed to be axisym-
metric with a density several orders of magnitude higher than the density of the background plasma surrounding
the cloud. Under the action of hydrodynamic and magnetic pressures and the external heat source, the plasma
cloud begins to expand in the background plasma. The flow is considered axisymmetric and is simulated as the
propagation of the plasma cloud in a certain cylindrical volume filled with a low-density plasma and located in a
longitudinal magnetic field. In a magnetohydrodynamic approximation, the basic equations for plasma heating and
propagation can be written in vector form
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∂ns
∂t

+ –er (nsV ) = 0,

nsM
(∂V
∂t

+ (V · ∇)V
)

=
1
c

[j ×H]−∇(nsT ), (12)

3
2
∂(nsT )
∂t

+
3
2

–er (nsTV ) + (nsT )–erV = –er (ke∇T ) +Q;

∂H

∂t
= rot [V ×H] +

c

ens
[∇ns ×∇T ] +

c2

4πσ
∆H. (13)

Here ns is the plasma density, M is the mass of a particle, V is the velocity, c is speed of light, H is the magnetic
field, j = (c/(4π)) rotH is the current density, T is the temperature of the plasma, σ is the longitudinal conductivity
of the plasma, ke is the electron heat conductivity, e is the electron charge, Q is the external heat source which
simulates plasma heating by a relativistic electron beam.

The external magnetic field is directed along the z axis. By virtue of flow symmetry, the problem does not
depend on the angular coordinate ϕ but contains all components of the velocity and magnetic field along the z, r,
and ϕ directions of cylindrical coordinates. For closure of system (12), (13), the equation of state is specified as
p = nsT , the heat conductivity is considered constant as well as the longitudinal conductivity σ.

The calculation domain is chosen as a section of a cylinder of length L and radius R with a dense plasma
cloud located at its center. By virtue of the symmetry of the problem, on the axis r = 0, the following conditions
were imposed

∂ns
∂r

=
∂vz
∂r

=
∂p

∂r
=
∂Hz

∂r
= vr = vϕ = Hr = Hϕ = 0.

The upper and lateral boundaries of the cylinder were specified far enough from the center, and it was assumed
that the perturbations from the cloud do not reach the boundaries because of the effect of magnetohydrodynamic
forces. On the boundaries, the conditions for the background plasma were specified as follows: Hr = Hϕ = vr =
vz = vϕ = 0, p = p∞, ns = ns∞, and Hz = Hz∞.

During the solution, we varied the initial density of the cloud, the external magnetic field, and the power
of the heat source Q. The solution of the present problem was unsteady and was sought in the region L × R at
various times. In the absence of a magnetic field and a heat source, the solution was sought before the time when
the perturbations from the plasma cloud reached the boundaries of the region, and in their presence, the solution
was sought before formation of the main structure of the flow.

To construct of a numerical algorithm, it is convenient to write the basic equations (12) and (13) in vector
form as two systems of equations:

∂U

∂t
= −(W 0

r +W 0
z) +R0 = −W 0; (14)

∂f1

∂t
= −(W 1

r +W 1
z) +R1 = −W 1. (15)

System (14) describe hydrodynamic processes, and (15) are the magnetic-field equations. Here

U =


ns
nsvr
nsvϕ
nsvz
p

 , W 0
r =



1
r

∂(rnsvr)
∂r

1
r

∂(rnsv2
r)

∂r
+

1
M

∂p

∂r
−
nsv

2
ϕ

r

1
r

∂(rnsvrvϕ)
∂r

+
nsvrvϕ
r

1
r

∂(rnsvrvz)
∂r

1
r

(∂(rpvr)
∂r

+
2
3
p
∂(rvr)
∂r

)
− 2

3
1
r

∂

∂r

(
rke

∂T

∂r

)


,
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W 0
z =



∂(nsvz)
∂z

∂(nsvzvr)
∂z

∂(nsvzvϕ)
∂z

∂(nsv2
z)

∂z
+

1
M

∂p

∂z

∂(pvz)
∂z

+
2
3
p
∂vz
∂z
− 2

3
∂

∂z

(
ke
∂T

∂z

)


,

R0 =



0

1
4πM

(
Hz

∂Hr

∂z
−Hz

∂Hz

∂r
− Hϕ

r

∂(rHϕ)
∂r

)
1

4πM

(Hr

r

∂(rHϕ)
∂r

+Hz
∂Hϕ

∂z

)
1

4πM

(
−Hϕ

∂Hϕ

∂z
−Hr

∂Hr

∂z
+Hr

∂Hz

∂r

)
2Q/3


,

f1 =

 Hr

Hϕ

Hz

 , W 1
r =


− c2

4πσ
1
r

∂

∂r

(
r
∂Hr

∂r

)
∂

∂r
(vrHϕ − vϕHr)−

c2

4πσ
1
r

∂

∂r

(
r
∂Hϕ

∂r

)
−1
r

∂

∂r
(rvzHr − rvrHz)−

c2

4πσ
1
r

∂

∂r

(
r
∂Hz

∂r

)

 ,

W 1
z =



∂

∂z
(vzHr − vrHz)−

c2

4πσ
∂

∂z

(∂Hr

∂z

)
− ∂

∂z
(vϕHz − vzHϕ)− c2

4πσ
∂

∂z

(∂Hϕ

∂z

)
− c2

4πσ

(∂Hz

∂z

)

 ,

R1 =


0

c

ens

1
r

(∂T
∂r

∂ns
∂z
− ∂T

∂z

∂ns
∂r

)
0

 .

We note that the equations of continuity, motion, and magnetic induction are written in divergent form, and the
energy equation is written in nondivergent form.

Along with Eqs. (14) and (15), we consider the following operator-vector equations in nondivergent form:

∂f

∂t
= −(Ω0

1 + Ω0
2)f + S = −(A−1)W 0; (16)

∂f1

∂t
= −(Ω1

1 + Ω1
2)f1 +R1 = −W 1. (17)

Here A = ∂U/∂f , f = (ns, vr, vϕ, vz, p)t, Ω0
1f = A−1W 0

z, Ω0
2f = A−1W 0

z, S = R/M , Ω1
1f1 = W 1

r, and
Ω1

2f1 = W 1
z.

2.2. Numerical Algorithm. In the calculation domain L×R, we introduce a difference grid with constant
steps in space hr = R/I , hz = L/J , where I and J are the numbers of grid sizes along the r and z directions,
respectively. The differential operators ∂/∂r and ∂/∂z are approximated by the difference operators Λk1 and Λk2
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of order k, where k = 1, 2, . . . (the superscript k is omitted below). The convective terms vr∂/∂r and vz∂/∂z in
Eqs. (16) and (17) are approximated by one-sided difference operators of the first order (k = 1) with allowance for
the sign of the velocities vr and vz. The terms with pressure (magnetic and gas-dynamic) are approximated by the
formulas conjugate to the convective terms (see [6]), and the second derivatives are approximated by symmetric
three-point difference operators of the second order. For example, the approximation formulas in the r direction
are

vr
∂

∂r
≈ vrΛ1, vrΛ1 =

{
vrΛ1−, vr > 0,

vrΛ1+, vr < 0,
(18)

Λ1−fl =
fl − fl−1

hr
, Λ1+fl =

fl+1 − fl
hr

, Λ̄1 =

{
Λ1+, vr > 0,

Λ1−, vr < 0,

Λ1aΛ1fl = [al+1/2(fl+1 − fl)− al−1/2(fl − fl−1)]/h2
r, al±1/2 = (al + al±1)/2.

Similarly, the vector operators W s
r, W

s
z, and Rs (s = 0, 1) in Eqs. (14) and (15) are approximated deferentially

with the first or second orders.
With allowance for the notation (18), the difference matrix operators Ω0

1 and Ω0
2 are written as

Ω0
1 =



(1/r)Λ1rvr 0 0 0 0

0 vrΛ1 −vϕ/r 0 (1/(Mns))Λ̄1

0 vϕ/r vrΛ1 + vr/r 0 0

0 0 0 vrΛ1 0

0 (5/3)(p/r)Λ1 0 0 vrΛ1 − (2/3)Λ1rkeΛ1(1/ns)


,

Ω0
2 =



Λ2vz 0 0 0 0

0 vzΛ2 0 0 0

0 0 vzΛ2 0 0

0 0 0 vzΛ2 (1/(Mns))Λ̄2

0 0 0 (5/3)pΛ2 vzΛ2 − (2/3)Λ2keΛ2(1/ns)


.

The matrix operators Ω1
1 and Ω1

2, which approximate the equations of magnetic induction in divergent form can be
written similarly.

To construct an economical difference scheme, we perform splitting of the operators Ω0
j into physical pro-

cesses, i.e., we write them as

Ω0
1 = Ω0

11 + Ω0
12,

where

Ω0
11 =


0 0 0 0 0
0 0 −vϕ/r 0 (1/(Mns))Λ̄1

0 vϕ/r vr/r 0 0
0 0 0 0 0
0 (5/3)(p/r)Λ1 0 0 vrΛ1 − (2/(3r))Λ1rkeΛ1(1/ns)

 .

The operator Ω0
11 contains terms with pressure, the free terms from the equations of motion, and all terms of the

energy equation along the r direction, and the operator

Ω0
12 =


(1/r)Λ1rvr 0 0 0 0

0 vrΛ1 0 0 0
0 0 vrΛ1 0 0
0 0 0 vrΛ1 0
0 0 0 0 0


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contains convective terms from the equations of motion and all terms of the continuity equation. We note that the
continuity equation is approximated in divergent form. Splitting into physical processes along the z direction is
introduced similarly, i.e., the operator Ω0

2 is written as Ω0
2 = Ω0

21 + Ω0
22.

For numerical solution of the equations of gas dynamics (14) or (16), we consider the following scheme of
approximate factorization with splitting of the operators into physical processes and spatial directions [7]:

2∏
j=1

(I + ταΩ0
j1)(I + ταΩ0

j2)
fn+1 − fn

τ
= −(A−1)n(W 0)n (19)

or the equivalent fractional-step scheme

ξn = −(A−1)n(W 0)n, (I + ταΩ0
11)ξn+1/4 = ξn, (I + ταΩ0

12)ξn+2/4 = ξn+1/4,
(20)

(I + ταΩ0
21)ξn+3/4 = ξn+2/4, (I + ταΩ0

22)ξn+1 = ξn+3/4, fn+1 = fn + τξn+1,

where τ is a time step, n is the time-step number, and 0 6 α 6 1 is the weight parameter. The difference scheme
(19) or (20) approximates the basic equations (12) with order O(τ + h). Furthermore, as follows from the form
of the operators Ω0

jl, the fractional-step scheme is implemented by scalar three-point runs, similar to the splitting
scheme [7]. The equations on the right side of the scheme are approximated in conservative form, which improves
the calculation accuracy. We note that along with gas-dynamic terms, the vector (A−1)n(W 0)n contains terms
with magnetic pressure and is approximated in the nth known layer. Thus, in the difference scheme (19), the
magnetohydrodynamic terms are approximated explicitly. In the absence of a magnetic field, the difference scheme
(19) is unconditionally stable (in a linear approximation). This makes it possible to vary the grid steps (time and
spatial) to obtain a numerical solution with the required accuracy. With a nonzero magnetic field, the unconditional
stability of the scheme is disturbed, but, as calculations show, the step τ can be chosen over a wide range of values.
After finding gas-dynamic parameters in the new (n + 1)th time layer, the magnetic-induction equations (15) are
solved. To solve them numerically, we constructed the following scheme of approximate factorization with operator
splitting into spatial directions:

(I + ταΩ1
1)(I + ταΩ1

2)
fn+1

1 − fn1
τ

= −(W 1)n (21)

or the equivalent fractional-step scheme

ξn1 = −(W 1)n, (I + ταΩ1
1)ξn+1/2

1 = ξn1 ,
(22)

(I + ταΩ1
2)ξn+1

1 = ξ
n+1/2
1 , fn+1

1 = fn1 + τfn+1
1 .

As follows from the form of the operators Ω1
j , the difference fractional-step scheme (22) is implemented by

scalar runs and is unconditionally stable for α > 0.5.
The explicit representation for the magnetic field in scheme (19) leads to disturbance of the unconditional

stability of schemes (19) and (21) but allows one to effectively obtain a solution of the equations by scalar runs,
which makes this algorithm economical. Moreover, this computational algorithm can also be employed for more
complex models.

2.3. Calculation Results. The difference scheme proposed above was tested by solving simplified problems
in order to assess the calculation accuracy and stability of the algorithm. The calculations confirmed theoretical
estimates of the stability of the scheme. This allows grid parameters to be varied over a wide range to obtain
a solution in minimum computing time. A solution of adequate accuracy (of the order of the accuracy of the
physicomathematical model) can be obtained on 300×150 calculation grids. Further double increase in the number
of nodes in each direction practically did not lead to a change of the solution, and the calculation error was not
more than 5%. The largest difference was observed for the symmetry axis, which is explained by the choice of a
cylindrical coordinate system, which has a mathematical singularity at r = 0.

In the first series of calculations, we studied the propagation of a gas cloud located at the center of the
calculation domain in the absence of a magnetic field. At the initial time, unperturbed values were specified in the
domain (below, all quantities are given in dimensionless units); the number density and pressure are obtained by
normalization by the corresponding values of the background plasma, and the characteristic time and distance are
1 µsec and 1 cm, respectively): ns∞ = 1.0, p∞ = 1.0, vr∞ = vz∞ = 0, and Hr∞ = Hϕ∞ = Hz∞ = 0, and in the
gas cloud, the density and pressures were varied from the background values to nsc and pc ≡ 102–103, respectively
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Fig. 2. Initial configuration of the density field.

Fig. 3. Expansion in the absence of a magnetic field: (a) density distribution; (b) pressure distribution.

(Fig. 2). Due to the initial pressure gradient, the cloud began to expand. We note that for the explicit scheme,
occurrence of such flow regimes with a pressure gradient and a density of about 103 seems almost impossible because
it requires a very small step in time. The problem had two types of symmetry — axial symmetry about the axis of
the calculation domain at r = 0 and mirror symmetry about the plane passing through the center of the gas cloud
perpendicular to the z axis.

Figure 3 gives a typical flow pattern for the time t = 0.5 with a pressure drop and density at the initial
moment pc/p∞ = nsc/ns∞ = 103. The result obtained adequately describes the spherically symmetric propagation
of the cloud. We note that the observed irregularities in the region of maximum density are due to inaccuracies
of algorithms during visualization. Two density waves are formed in regions of maximum pressure gradients. At
the same time, a region of lower density is formed inside the cloud. Its density is comparable to the density of the
background plasma and its temperature is several orders of magnitude lower than the initial value. The plasma
temperature reduces in the region between the wave fronts. We note that in these calculations, the heat conductivity
was set equal to zero. The dimensionless phase velocity of the front is Vph = 2.07 for the external wave and 1.29
for the internal wave. The speed of sound Cs in the initial state is also 1.29. Thus, in the system under the given
initial conditions, a shock wave with a Mach number Vph/Cs ≈ 1.6 is formed.

For comparison, Fig. 4 gives the density distribution at the same time for the same initial conditions for the
one-dimensional problem corresponding to expansion of a plasma cylinder of infinite extent (and not a sphere, as
in Fig. 3). Unlike in the spherical case, here the residual density at the center of the cloud remains well beyond the
background value.

In further calculations, we studied the effect of a magnetic field on the propagation of the plasma cloud.
This effect was characterized by the coefficient Φ (equal to the double ratio of magnetic-field pressure to gas-kinetic
pressure under the given initial conditions), which was varied over a wide range (0 6 Φ < 102). Because the
magnetic field is directed along the z axis, the resulting magnetohydrodynamic forces act across the z axis in the
direction of the radius. They confine the lateral expansion of the magnetized plasma cloud, which can penetrate
through the magnetic field by collisional diffusion, which depends on electron conduction. Figure 5 shows pressure
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Fig. 4. Calculation results for the one-dimensional problem.

Fig. 5. Expansion in a magnetic field for Φ = 5 (a), 15 (b), and 30 (c).

profiles at the time t = 0.5 for values Φ = 5, 15, and 30. Amplification of the magnetic field (increase of Φ) leads to
an increase in shock-wave velocity in the radial direction. This is explained by an increase in the elasticity of the
plasma due to magnetic field freezing-in [8]. In this case, the pressure and density amplitudes at the shock-wave
front decrease by one or two orders of magnitude. Most of the plasma confined by the magnetic field remains in
the region of the internal front, whose transverse velocity decreases with increase in magnetic field (Fig. 5a and b).
Finally, in the case of Φ = 30 (Fig. 5c), the transverse expansion of the cloud practically ceases, and it is divided
into two parts, which spread along the axis.

Figure 6 gives the mean radius of the cloud δ versus the magnitude of the magnetic field at t = 0.5 (the
mean radius of the cloud was determined by the region in which half maximum density of the cloud was reached).
An increase of the parameter Φ leads to a decrease in the expansion region, and for large values of Φ, the plasma
spreads primarily in the z direction.

Figure 7 shows the change of the mean radius of the cloud δ with time for fixed magnitudes of the magnetic
field (Φ = 0, 10, 15, and 30). As follows from Fig. 7, the occurrence of a magnetic field limits the transverse
expansion of the cloud, and its maximum radius decreases with increase of the coefficient Φ.

In the experiment of [1], the expansion of the cloud was photographed in the ultraviolet spectrum. The
transverse dimensions of the cloud determined from the photographs at the times t = 2, 4, and 6 µsec are 0.5–1.0,
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Fig. 6 Fig. 7

Fig. 6. Mean radius of the cloud δ versus Φ at t = 0.5.

Fig. 7. Mean radius δ versus time for Φ = 0 (1), 10 (2), 15 (3), and 30 (4).

Fig. 8. Results of calculations with a heat source Q0 = 105 (a) and 2 · 105 (b).

Fig. 9. Mean radius δ versus Q0.

≈1.5, and ≈1.5 cm, respectively. Thus, the experiment also shows that the transverse expansion of the cloud is
limited by the magnetic field. In the longitudinal direction, there is free gas-dynamic expansion of the plasma.

In the final series of calculations, we performed numerical simulation of plasma expansion in the presence of
an extraneous heat source:

Q =

{
τnsQ0, ns > 1.5,

0, ns < 1.5.
(23)

Formula (23) simulates the absorption of the relativistic electron beam energy by the plasma in the simplest
approximation.

As follows from physical considerations, in the presence of an extraneous heat source, the gas-dynamic
processes in the cloud should proceed at higher rate because the pressure gradient, and, hence, the gas-dynamic
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force increase in this case. This is supported by the results of calculations with a heat source Q0 = 105 presented
in Fig. 8a (all calculations in this series were carried out on a 150 × 300 grid at Φ = 15). As shown in Fig. 8a,
in the calculation time, the perturbation reaches the boundaries of the calculation domain (cf. Fig. 5b). As the
power of the heat source (i.e., Q0) increases with increase in the temperature and pressure of the cloud during the
calculation, the internal wave front stops and begins to move backward (Fig. 8b), filling the low-density region at
the center with the plasma.

Figure 9 shows a curve of the mean radius of the cloud versus the power of the extraneous heat source at
t = 0.5. The simplified model of the problem does not describe the heating of the ions of the gas cloud by the
superthermal electrons of the background plasma, and, therefore, a general model is required to obtain detailed
quantitative characteristics.

CONCLUSIONS

Thus, in the present paper, we proposed a mathematical model for describing the formation and expansion
of a gas cloud that arose from a grain of lithium deuteride vaporized under the action of a relativistic electron beam.

The axisymmetric problem of the propagation of a dense plasma cloud into a rarefied background plasma
in an external magnetic field with and without an external heat source is considered in a magnetohydrodynamic
approximation using a simplified model.

The main regularities of the effect of the magnetic field on plasma expansion are obtained by numerical
simulation. The effect of the external source on plasma expansion characteristics is estimated.

This work was carried out within the framework of the Federal Target Program “Integration” (Grant
No. 274), the Program “Universities of Russia,” and the Federal Target Scientific and Engineering Program “Re-
search in the Priority Lines of Development of Civil Science and Engineering” [Grant No. 105-22/55(00)-P] and
supported by the Russian Foundation for Fundamental Research (Grant Nos. 99-01-00619 and 99-07-90418).
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